Теплица социальных технологий составила небольшую подборку онлайн-курсов по машинному обучению. В материале представлены российские и иностранные учебные программы, большая часть которых бесплатные.
1. Neural Networks for Machine Learning от University of Toronto
Бесплатный 4-месячный курс на Coursera. Лектор – когнитивный психолог. В программе курса – обучение персептронов (модель восприятия информации мозгом), распознавание объектов с помощью нейронных сетей, нейронные сети Deep Belief. После рассмотрения каждого из алгоритмов даются практические советы по его применению для решения задач машинного обучения. Однако у курса высокий порог вхождения – участников ждет много математики.
Страница курса
2. Machine Learning With Big Data от University of California
Курс подойдет всем тем, кто хочет узнать основы работы с большими данными и с помощью каких инструментов можно создавать прогностические модели.
3. «Введение в машинное обучение» от НИУ ВШЭ и «Яндекс»
Курс НИУ ВШЭ создавался при участии специалистов «Школы данных Яндекса», поэтому в его основе задачи, основанные на реальных данных. Слушатели узнают об основных методах машинного обучения и их особенностях, научатся оценивать качество моделей и их пригодность для решения конкретной задачи. От студентов ожидают знаний об основных понятиях математики и базовых навыков программирования.
Страница курса
Еще по теме: Топ-10 технологий 2017 года: искусственный интеллект, «умные» вещи и машинное обучение
4. «Machine Learning» от Stanford University
Курс познакомит с наиболее эффективными алгоритмами машинного обучения, у слушателей будет возможность получить опыт их практического применения. Стэнфордский курс также обещает лучшие инновационные практики Кремниевой Долины. Максимально широкое введение в машинное обучение, data mining и статистические методы распознавания образов. Однако нужно учесть, что практические задания слушатели выполняют не при помощи Python, а в Octave.
5. «Machine Learning Foundations: A Case Study Approach» от University of Washington
Профессоры из Университета Вашингтона дают по ходу курса практические примеры с реальными наборами данных, не перегружая курс углубленным изучением, сосредоточившись именно на знакомстве с темой.
6. «Машинное обучение» от «Школы данных Яндекса»
В рамках курса рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10-15 лет. По сути это более продвинутая версия совместного курса «Яндекса» и ВШЭ.
Страница курса
7. «Машинное обучение и анализ данных» от МФТИ и Yandex Data Factory
Ученые Московского физико-технического института (МФТИ) и практики из «Яндекса» объединили свои усилия для создания этого курса по анализу данных и машинному обучению. Курс поделен на несколько частей: «Математика и Python для анализа данных», «Обучение на размеченных данных», «Поиск структуры в данных», «Построение выводов по данным», «Прикладные задачи анализа данных».
Страница курса
8. Practical Machine Learning от Johns Hopkins University
Курс от частного исследовательского университета, занимающего высокие позиции в рейтингах вузов. Занятия продлятся 4 недели, авторы — профессора биостатистики из Bloomberg School of Public Health.
9. Cognitive Services APIs от Microsoft
Ведущий мировой производитель софта расскажет о возможностях машинного обучения на примере своей платформы для распознавания Cognitive Service.
10. Intro to machine learning
Наиболее карьероориентированный курс по машинному обучению. На Udacity он встроен в цепочку курсов, которая называется Nanodegree Program и, в конечном счете, позволяет получить знания, необходимые для работы на позиции data analyst. Один из кураторов курса – профессор Стэнфорда и сооснователь Udacity Sebastian Thrun.